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Abstract 

 

Computational Electromagnetics (CEM), though well-established, is an extremely active field, as is evident from 

the number of recent publications and symposium presentations on this topic. It should be noted, however, that the  

landscape of CEM applications is continuously evolving, as relatively new areas such as nano-photonics and 

biological sensors appear in the horizon.  A quick survey of the literature reveals that in the recent past the primary 

focus area in CEM has been the solution of ‘Large Problems,’ typically involving millions if not billions of 

unknowns. However, it has also been realized that many of the algorithms developed for solving large problems—

such as the Fast Multipole Method (FMM)—are restricted in their application primarily to perfectly conducting 

(PEC) bodies, since these algorithms are so-called “kernel-dependent.” Furthermore, a majority of these algorithms 

utilize iterative methods to solve large problems, because the memory required to store large matrices is well beyond 

the capability of most available computing platforms, which, in turn, rules out the possibility of using direct solvers 

to tackle them. While the iterative solvers work fine, and are numerically efficient for well-conditioned problems, 

they run into difficulties when handling a matrix who condition number is high, unless a suitable preconditioner can 

be found, which is not an easy task, especially when we are dealing with resonant structures, or when we encounter 

the ill-conditioning problem that inevitably arises at low frequencies. Even if the frequency is not low, the geometry 

of the problem may have multiscale features, and this may have serious repercussions, insofar as the convergence 

behavior of the iteration scheme is concerned. The presence of finite losses may further exacerbate the problem, and 

unfortunately, no quick-fix is available to alleviate it. 

The objective of this paper is to introduce several non-traditional MoM-type formulations designed to alleviate 

the problems we often encounter in the conventional MoM approach, when solving the new generation of CEM 

problems involving nano- or multi-scale or geometries, and those involving arbitrary media such as plasmonics. The 

non-traditional formulations include: (i) bypassing the use of conventional Green’s functions for scattering and 

radiation problems, and utilizing the newly developed Dipole Moment (DM) technique instead; (ii) tackling the low 

frequency instability problem without using the loop-star basis functions; (iii) employing an alternate formulation 

for the layered medium that does not utilize the traditional Sommefeld integral approach; (iv) utilizing macro basis 

functions, also referred to as the Characteristic Basis Functions (CBFs) that help reduce the size of large matrices to 

the point where one can use direct methods to solve them, and handle multiple right hand sides in an efficient way; 

(v) hybridizing the DM approach with traditional CEM formulations to solve multiscale problems efficiently; and, 

(vi) introducing a new CEM formulation in the frequency domain which is both matrix- as well as iteration-free, but 

which generates the solution by using a recursive update algorithm instead, just as is done in the FDTD leapfrog 

scheme.  

The paper will demonstrate that, when combined with the Characteristic Basis Function Method (CBFM), the 

proposed algorithms open up new vistas in computational electromagnetics, and enlarge the scope, as well as the 

range of application of the CEM solvers, to a wide variety of practical and real-world problems. 
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